
1. GAUSSIAN PROCESSES

A Gaussian process on a set T is a collection of random variables X = (Xt)t∈T on a common probability
space such that for any n ≥ 1 and any t1, . . . , tn ∈ T , the vector (X(t1), . . . ,X(tn)) has a normal distribution.
The joint distribution of X is determined by the mean function t → E[X(t)] and the covariance kernel K(t,s) :=
Cov(X(t),X(s)).

The index set T is arbitrary for now, but we shall usually take it to be a separable metric space (T,d), and
in many discussions that the metric space is compact or at least totally bounded.

In terms of measures: Consider the space RT of all real-valued functions on T . A subset of the form
{ f : f (ti) ∈ Ai, 1≤ i≤ n} for some n≥ 1, ti ∈ T and some Borel sets Ai ⊆R is called a cylinder set. Let G be the
sigma-algebra generated by all cylinder sets. Equivalently, we may consider the product topology on RT

(by definition the smallest topology that makes the projection maps Πt1,...,tn( f ) = ( f (t1), . . . , f (tn)) from RT to
Rn continuous) and define G as the Borel sigma-algebra of this topology.

Then, a measure µ on (RT ,G) is called a Gaussian measure if for every n ≥ 1 and every t1, . . . , tn ∈ T , the
push-forward measure µ◦Π−1

t1,...,tn on Rn is a Gaussian measure (with some mean vector and some covariance
matrix).

The relationship between the language of random variables and the language of measures is this. If
X = (Xt)t∈T is a Gaussian process, then X : Ω → RT and the push-forward P ◦X−1 is a Gaussian measure
on RT . Conversely, if µ is a Gaussian measure on (RT ,G), then on the probability space (RT ,G ,µ), the
co-ordinate random variables Π = (Πt)t∈T form a Gaussian process.

Exercise 1. If A ∈ G , then there exists a countable set F ⊆ T such that A is in the sigma-algebra generated
by the projections Πt , t ∈ F . Therefore, if X ,Y are two RT valued random variables with the same finite-
dimensional distributions, then X and Y have the same distribution.

Existence of a Gaussian process: An n× 1 Gaussian vector can have any mean vector but its covariance
matrix must be p.s.d. Therefore, if X = (Xt)t∈T is a Gaussian process with K(t,s) = Cov(Xt ,Xs), then the
matrix K[t1, . . . , tn] := (K(ti, t j))i, j≤n must be p.s..d for any n ≥ 1 and any t1, . . . , tn ∈ T . It is a pleasant and
fundamental fact that no other conditions are needed.

Theorem 2. Let T be any index set and let M : T → R be any function. Let K : T ×T → R be a p.s.d. kernel, i.e., K
is symmetric and (K(ti, t j))i, j≤n is a p.s.d. matrix for every n≥ 1 and every t1, . . . , tn ∈ T .

Then, there exists a probability space (Ω,F ,P) and random variables Xt : Ω → R for each t ∈ T such that X =
(Xt)t∈T is a centered Gaussian process with mean function M and covariance kernel K.

Proof. The projection of Gaussian distribution on Rn with mean (M(t1), . . . ,M(tn)) and covariance matrix
K[t1, . . . , tn], to the first n−1 co-ordinates, is precisely the Gaussian distribution with mean (M(t1), . . . ,M(tn−1))
and covariance matrix K[t1, . . . , tn−1]. By the Daniell-Kolmogorov theorem (more familiar as Kolmogorov’s
existence/consistency theorem) we get the existence of a measure µ with the required finite dimensional
distributions. !

Remark 3. In case T is countable, there is a more straightforward way to see this from the existence of i.i.d.
random variables. Without loss of generality let T = N and let ξi be i.i.d. N(0,1) random variables on some
probability space (for eg., on [0,1] with the Lebesgue measure on Borel sets). Then set Xi = ∑i

j=1 αi, jξ j where
the infinite lower-triangular matrix A = (αi, j)i, j is defined by AAt = (K(i, j))i, j. More explicitly, the equations
here are such that inductively we can write αi, j in terms of K(i′, j′), j′ ≤ i′ ≤ i.
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Exercise 4. Let T = [0,1] and let K(t,s) = t ∧ s. Show that there exists a centered Gaussian process with
covariance kernel K.

Asking for more? Once a Gaussian process is defined, we want to calculate probabilities of interesting
events. Consider the Gaussian process in Exercise ??. The event { f ∈ R[0,1] : lim f (1/n) exists} is an event
in G and one can calculate its probability. But the following more interesting events all lie outside G (by
Exercise ??) and hence we cannot ask their probability.

• { f : f is continuous at 0}.
• C(T ) = { f : f is continuous on T}.
• B(T ) = { f : f is bounded on T}.
• { f : f has no zeros}.

Analogously, supt Xt ,
R 1

0 Xtdt etc. are all non-measurable. In simpler language, although we can talk about
Xt(ω) for a fixed t (or countably many of them), we cannot talk about the trajectories t → Xt(ω).

This makes the Gaussian process as defined quite uninteresting mathematically and totally inadequate to
model physical situations (like trajectories of a Brownian particle, signals with noise, graph of stock prices
etc.). Clearly these problems arise when T is uncountable. We state two ways to deal with it. One uses
measure theoretical language, the other is more down to earth.

Random continuous functions: Let T be a metric space and let C(T ) be the space of continuous functions
on T . Recall the following facts.

(1) When T is compact, C(T ) becomes a normed-linear space with ‖ f‖T = supt∈T | f (t)|.

(2) When T is sigma-compact, C(T ) becomes a metric space with d( f ,g) = supn(‖ f −g‖Kn ∧1) where Kn
is any fixed sequence of compact sets that exhausts T .

(3) When T is not sigma-compact, C(T ) becomes merely a topological space given by the semi-norms
‖ f‖K for comapct sets K. We do not care about this case.

In any case, C(T ) has a Borel sigma-algebra B(C(T )). What we would like is random variables X : Ω→C(T )
that are measurable in the Borel sigma-algebra (then we call X a C(T )-valued random variable).

Note that B(C(T )) is also generated by finite-dimensional cylinder sets and hence Exercise ?? continues
to be valid. However, many more interesting events become available. For example, when T is compact,
the set { f : ‖ f‖< 1} is a Borel set in C(T ) and we can talk about its probability.

However, given a consistent family of finite dimensional distributions, it is not trivial to check whether
a C(T ) valued random variable with the given finite dimensional distributions even exists. In fact the
following question is a deep and fundamental (and fully solved) question that we shall study later.

Question: Let T be a compact metric space. Given M : T → R and a K : T × T → R, does there exist a
C(T )-valued random variable X = (Xt)t∈T such that (Xt1 , . . . ,Xtn) has Gaussian distribution with mean vector
(M(t1), . . . ,M(tn)) and covariance matrix K[t1, . . . , tn]?

Show the following necessary condition.

Exercise 5. Show that for a positive answer to the above question, it is necessary that that M and K must be
continuous on T and T ×T respectively.

There are two ways in which to rephrase the basic question.

In the language of measure theory: Given M and K, we have constructed a Gaussian measure µ on (RT ,GT )
with mean M and covariance K. Complete the sigma-algebra under the measure µ. Recall that this means
considering all A ⊆ RT such that there are sets B,C ∈ GT with B ⊆ A ⊆C and such that µ(B) = µ(C). The set
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of all such subsets A is a larger sigma-algebra denote Gµ
T . If we define µ(A) to be the common value of µ(B)

and µ(C), then µ extends as a probability measure to Gµ
T . The completion depends on µ, of course.

Now, if it happens that Gµ
T contains µ(C(T )) and µ(C(T )) = 1, then by simply restricting it to C(T ) we

would have answered the above question positively. Thus, the question really is, when does the completion
give full measure to C(T ).

Less sophisticated language: In all cases of interest to us, T will have a countable dense subset T ′. If we also
assume that T is compact, then continuous functions on T are in one to one correspondence with uniformly
continuous functions on T ′.

Note that there is no ambiguity of versions of a Gaussian process on T ′, since it is countable (therefore
RT ′ is metrizable and GT ′ is its Borel sigma-algebra). Therefore, we may simply consider M and K restricted
to T ′ and T ′ ×T ′ respectively, construct the Gaussian process on T ′ (which can be done b enumerating T ′

and using a countable sequence of i.i.d. standard normals). Then the question is whether the resulting
process X ′ on T ′ is uniformly continuous (w.p.1).

If the answer is yes, then sample by sample, it extends to a random function in C(T ). Further, but
properties of Gaussians, then extended process with also be Gaussian. Since M and K are continuous on T
and T ×T , the process X has this mean and covariance.
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1. EXAMPLES OF GAUSSIAN PROCESSES

We give many examples. In all of them we take the mean function to be zero.

Example 1. For an arbitrary T , let f1, . . . , fn : T → R be fixed (non-random) functions. Let ξi be i.i.d. stan-
dard normal random variables. Then define Xt(ω) = ∑n

i=1 ξi(ω) fi(t). Then, X is a Gaussian process with
covariance kernel K(t,s) = ∑n

i=1 fi(t) fi(s). We study some special examples later.
(1) T = {1,2 . . . ,n}, in which case fi may be identified with the vector vi=( fi(1), . . . , fi(n))t . Then X may

be written as vector X = ξ1v1 + . . . + ξnvn which is just Nn(0,Σ) with Σ = v1vt
1 + . . . + vnvt

n. In the
notation above K(i, j) = σi, j.

(2) T = R or C and fi(z) = zi, 0≤ i≤ n−1. Then X(t) = ∑n−1
k=0 ξktk is a Gaussian polynomial.

(3) T = S1 or R and fk(t) = eiλkt where λk ∈ R (if T = S1 we take λk ∈ Z). Then X(t) is a Gaussian
trigonometric polynomial.

Example 2. Gaussian series. Let ξn be i.i.d. N(0,1) random variables and define the following.
(1) X(z) = ∑∞

n=0 cnξnzn for z ∈ C and a specified sequence cn. It is a random analytic function.

(2) X(t) = ∑n∈Z cnξneint for t ∈ [0,2π) and a specified sequence cn.
For appropriate choices of cns these series will converge (for all z or for all t, w.p.1) and then defines a
Gaussian process on C or [0,2π), respectively. Similarly, whenever the random series ∑n ξn fn(t) converges
w.p.1. for all t ∈ T for some deterministic functions fn, we get a Gaussian process on T .

We shall see later that all Gaussian processes are essentially of this form, for an appropriate choice of the
functions fn.

Example 3. Let X ∼ Nn(0,Σ). We already said that this is a centered Gaussian process on [n] with covariance
K(i, j) = σi, j. We can expand the index set by defining Xv = vtX for all v ∈ Rn. Then, the collection (Xv)v∈Rn

is also Gaussian process wth covariance kernel K(v,u) = vtΣu.
Note that (v,u) := vtΣu is an inner product on Rn whenever Σ is a p.d. matrix. Then, v → Xv is an

isometry from this inner product space into L2(Ω,F ,P). In other words, the collection {Xv : v ∈ Rn} is a
“concrete realization” of the given inner product space9.

Example 4. Let ξn, n∈Z be i.id. N(0,1) random variables on a probability space (Ω,F ,P). For each v = (vn)∈
!2, define Xv := ∑n∈Z ξnvn. It is a standard fact from a first course in probability (we shall prove similar and
more general things later) that for each fixed v, the series defining Xv converges (i.e., limm,n→∞ ∑n

k=−m ξkvk ex-
ists a.s.) and has N(0,‖v‖2) distribution. Further, any finite number of them have a joint normal distribution
and E[XvXu] = ∑n vnun. Thus, X = (Xv)v∈!2 is a Gaussian process with covariance kernel K(v,u) = 〈v,u〉!2 .

There is a subtlety here when compared to the previous example. For every v, let Ev ⊆Ω be the set of ω
for which the series defining Xv converges. Then P(Ev) = 1 but P(∩vEv) = 0 (see Exercise ??). This means
that for a.e. ω, there are some (in fact many!) v for which Xv(ω) does not make sense!

Exercise 5. (1) Suppose ∑n unvn converges for every v ∈ !2. Show that u ∈ !2.

(2) Deduce that P(∩vEv) = 0 in the above example.

Example 6. Continuation of the previous example. Let V = {v ∈ !2 : ∑n n2v2
n < ∞}. It can be shown that

P(Ev) = 1. Hence, if we consider the restricted Gaussian process (Xv)v∈V , then the “trouble” in the previous
example does not arise. Not only is X a Gaussian process, for a.e. ω, we can consider all the values of Xv
together. Indeed, v→ Xv defines a random bounded linear functional of V .

9This looks like an empty exercise but here is a thing to think about. Random variables can be multiplied and hence the collection
of linear combinations of Xv1 . . .Xvk where k ≥ 1 and vi ∈ Rn gives a new subspace H of L2(Ω,F ,P) which contains the original vector
space V = {Xv : v ∈ Rn}. If we stayed with Rn with the given inner product, can you figure out how to get this new vector space?
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Exercise 7. Show that P(
T

v∈V Ev) = 1 in the above example.

Example 8. As a continuation of this theme, consider a weight sequence w = (wn). Let !2
w = {v : ∑n v2

nwn < ∞}.
Define Xv = ∑n wnvnXn.

Example 9. Let T = [0,1]. Let K(t,s) = δt−s. The corresponding Gaussian process is called white noise.

Example 10. Let T = [0,1]. Let K(t,s) = t ∧ s. Exercise ?? shows that K is p.s.d. Hence it defines a Gaussian
process. It will be shown that one can construct a probability space and random variables Xt such that
t → Xt(ω) is a continuous random function for a.e. ω and then it will be called Brownian motion.

Example 11. Let T = [0,1]2 and let K((t1, t2),(s1,s2)) = (t1∧s1)+(t2∧s2). The corresponding Gaussian process
can again be realized as a random continuous function and will thereafter be called Brownian sheet.

Example 12. Let G = (V,E) be a finite connected graph with a specified subset B⊆V that will be called the
boundary. Let V := {(xv)v∈V : xv = 0 for v ∈ B}. Then define Q(x,x) = ∑u∼v(xu− xv)2 where the sum is over
adjacent pairs of vertices in V . Then Q is a non-degenerate quadratic form on V and we can talk of the
Gaussian measure on V with density proportional to exp{− 1

2 Q(x,x)} (w.r.t. ∏v'∈B dxv). The corresponding
Gaussian process X is called the Gaussian free field on G with zero boundary conditions on B.

What is the covariance of X? It is a good exercise to work out that E[XuXv] = G(u,v) where G is the Green’s
function on V with Dirichlet boundary condition on B. One way of defining it is this. Start a simple random
walk on G at u and stop it when it hits a vertex in B for the first time. The number of visits to v is a random
variable whose expected value is defined to be G(u,v).

Exercise 13. Let T be a finite rooted tree and let B = {root} be a singleton. In this case, describe the GFF on
T (if the question sounds vague, assume that you have a supply of i.i.d. N(0,1) random variables and use
them to construct the GFF on T ).

Example 14. Let T = R2 and let K(u,v) = J0(‖u− v‖) where J0 is the Bessel function. It can be shown
that J0(‖u‖) is the Fourier transform of the uniform measure on S1 and hence K is a p.s.d. kernel. The
corresponding Gaussian process (which can be shown to have smooth sample paths) is called the random
plane wave.

Stationary Gaussian process: Let G be a group that acts on an index set T (a group of bijections of T under
composition). A stochastic process X = (Xt)t∈T is said to be invariant or stationary (under the action of G) if

(Xg(t))t∈T
d= (Xt)t∈T .

Since finite dimensional distributions determine the distribution of a process, the condition is equivalent

to asking that (Xg(t1), . . . ,Xg(tn))
d= (Xt1 , . . . ,Xtn) for all ti ∈ T and for all g ∈G. In case of a Gaussian process the

condition may be stated in terms of the mean and covariance alone, i.e., M(g(t)) = M(t) and K(g(t),g(s)) =
K(t,s) for all t,s ∈ T and all g ∈ G.

Among the example stated earlier, the random plane wave is a stationary process (under translations
and rotations of the plane). Brownian motion is not, since Var(Xt) = t depends on t. Here is a variant of it
that is.

Example 15. Let T = R and let K(t,s) = e−|t−s|. This is a valid covariance kernel and the corresponding
Gaussian process (which can be made to have continuous sample paths) is a stationary process (under
translations of the line). It is known as the Ornstein-Uhlenbeck process. It is related to Brownian motion in
a simple way. If (Wt)t∈(0,∞) is a Brownian motion (covariance is t ∧ s), then Xt := e−t/2Wet is an Ornstein-
Uhlenbeck process.
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